The classification of root systems

Maris Ozols

University of Waterloo
Department of C&O

November 28, 2007
Definition of the root system

Definition
Let $\mathbb{E} \cong \mathbb{R}^n$ be a real vector space. A finite subset $R \subset \mathbb{E}$ is called root system if

1. span $R = \mathbb{E}$, $0 \notin R$,
2. $\pm \alpha \in R$ are the only multiples of $\alpha \in R$,
3. R is invariant under reflections s_α in hyperplanes orthogonal to any $\alpha \in R$,
4. if $\alpha, \beta \in R$, then $n_{\beta\alpha} = 2 \langle \beta, \alpha \rangle / \langle \alpha, \alpha \rangle \in \mathbb{Z}$.

The elements of R are called roots. The rank of the root system is the dimension of \mathbb{E}.
Definition of the root system

Definition
Let $\mathbb{E} \cong \mathbb{R}^n$ be a real vector space. A finite subset $R \subset \mathbb{E}$ is called a root system if

1. $\text{span } R = \mathbb{E}$, $0 \notin R$,

2. $\pm \alpha \in R$ are the only multiples of $\alpha \in R$,

3. R is invariant under reflections s_α in hyperplanes orthogonal to any $\alpha \in R$,

4. if $\alpha, \beta \in R$, then

$$n_{\beta \alpha} = \frac{2 \langle \beta, \alpha \rangle}{\langle \alpha, \alpha \rangle} \in \mathbb{Z}.$$

The elements of R are called roots.

The rank of the root system is the dimension of \mathbb{E}.

Definition of the root system

Definition

Let $E \cong \mathbb{R}^n$ be a real vector space. A finite subset $R \subset E$ is called a *root system* if

1. $\text{span } R = E$, $0 \notin R$,
2. $\pm \alpha \in R$ are the only multiples of $\alpha \in R$,
Definition of the root system

Definition
Let \(E \cong \mathbb{R}^n \) be a real vector space. A finite subset \(R \subset E \) is called a root system if

1. \(\text{span} \, R = E, \, 0 \not\in R \),
2. \(\pm \alpha \in R \) are the only multiples of \(\alpha \in R \),
3. \(R \) is invariant under reflections \(s_\alpha \) in hyperplanes orthogonal to any \(\alpha \in R \),

The elements of \(R \) are called roots.

The rank of the root system is the dimension of \(E \).
Definition of the root system

Definition

Let $\mathbb{E} \cong \mathbb{R}^n$ be a real vector space. A finite subset $R \subset \mathbb{E}$ is called a *root system* if

1. $\text{span } R = \mathbb{E}$, $0 \notin R$,
2. $\pm \alpha \in R$ are the only multiples of $\alpha \in R$,
3. R is invariant under reflections s_α in hyperplanes orthogonal to any $\alpha \in R$,
4. if $\alpha, \beta \in R$, then $n_{\beta\alpha} = 2 \frac{\langle \beta, \alpha \rangle}{\langle \alpha, \alpha \rangle} \in \mathbb{Z}$.

The elements of R are called *roots*. The *rank* of the root system is the dimension of \mathbb{E}.
Definition of the root system

Definition
Let $E \cong \mathbb{R}^n$ be a real vector space. A finite subset $R \subset E$ is called a *root system* if

1. $\text{span } R = E$, $0 \notin R$,
2. $\pm \alpha \in R$ are the only multiples of $\alpha \in R$,
3. R is invariant under reflections s_α in hyperplanes orthogonal to any $\alpha \in R$,
4. if $\alpha, \beta \in R$, then $n_{\beta\alpha} = 2 \frac{\langle \beta, \alpha \rangle}{\langle \alpha, \alpha \rangle} \in \mathbb{Z}$.

The elements of R are called *roots*.

The *rank* of the root system is the dimension of E.
Restrictions

Projection

\[
\text{proj}_\alpha \beta = \alpha \frac{\langle \beta, \alpha \rangle}{\langle \alpha, \alpha \rangle} = \frac{1}{2} n_{\beta \alpha} \alpha
\]
Restrictions

Projection

$$\text{proj}_\beta \alpha = \alpha \frac{\langle \beta, \alpha \rangle}{\langle \alpha, \alpha \rangle} = \frac{1}{2} n_{\beta \alpha} \alpha$$

Angles

$$n_{\beta \alpha} = 2 \frac{\langle \beta, \alpha \rangle}{\langle \alpha, \alpha \rangle} = 2 \frac{||\beta||}{||\alpha||^2} \frac{||\alpha|| \cos \theta}{||\alpha||} = 2 \frac{||\beta||}{||\alpha||} \cos \theta \in \mathbb{Z}$$

$$n_{\beta \alpha} \cdot n_{\alpha \beta} = 4 \cos^2 \theta \in \mathbb{Z}$$

$$4 \cos^2 \theta \in \{0, 1, 2, 3, 4\}$$
Angles

\[4 \cos^2 \theta \in \{0, 1, 2, 3\}\], or \(\cos \theta \in \pm \left\{0, \frac{1}{2}, \frac{\sqrt{2}}{2}, \frac{\sqrt{3}}{2}\right\}\]
Examples in rank 2

Root system $A_1 \times A_1$

(decomposable)
Examples in rank 2

Root system A_2
Examples in rank 2

Root system B_2
Examples in rank 2

Root system G_2
Consider a vector d, such that $\forall \alpha \in R : \langle \alpha, d \rangle \neq 0$. Define $R^+(d) = \{ \alpha \in R | \langle \alpha, d \rangle > 0 \}$. Then $R = R^+(d) \cup R^-(d)$, where $R^-(d) = -R^+(d)$.

Definition: A root α is called positive if $\alpha \in R^+(d)$ and negative if $\alpha \in R^-(d)$.

Definition: A positive root $\alpha \in R^+(d)$ is called simple if it is not a sum of two other positive roots.

Definition: The set of all simple roots of a root system R is called basis of R.

Positive roots and simple roots
Consider a vector d, such that $\forall \alpha \in R : \langle \alpha, d \rangle \neq 0$. Define $R^+(d) = \{ \alpha \in R | \langle \alpha, d \rangle > 0 \}$. Then $R = R^+(d) \cup R^-(d)$, where $R^-(d) = -R^+(d)$.

Definition

A root α is called *positive* if $\alpha \in R^+(d)$ and *negative* if $\alpha \in R^-(d)$.
Positive roots and simple roots

Consider a vector d, such that $\forall \alpha \in R : \langle \alpha, d \rangle \neq 0$. Define $R^+(d) = \{ \alpha \in R | \langle \alpha, d \rangle > 0 \}$. Then $R = R^+(d) \cup R^-(d)$, where $R^-(d) = -R^+(d)$.

Definition
A root α is called positive if $\alpha \in R^+(d)$ and negative if $\alpha \in R^-(d)$.

Definition
A positive root $\alpha \in R^+(d)$ is called simple if it is not a sum of two other positive roots.
Positive roots and simple roots

Consider a vector d, such that $\forall \alpha \in R : \langle \alpha, d \rangle \neq 0$. Define $R^+(d) = \{\alpha \in R | \langle \alpha, d \rangle > 0\}$. Then $R = R^+(d) \cup R^-(d)$, where $R^-(d) = -R^+(d)$.

Definition
A root α is called **positive** if $\alpha \in R^+(d)$ and **negative** if $\alpha \in R^-(d)$.

Definition
A positive root $\alpha \in R^+(d)$ is called **simple** if it is not a sum of two other positive roots.

Definition
The set of all simple roots of a root system R is called **basis** of R.
Properties of simple roots

Definition
The hyperplanes orthogonal to $\alpha \in R$ cut the space E into open, connected regions called *Weyl chambers*.

Lemma There is a one-to-one correspondence between bases and Weyl chambers.

Definition The group generated by reflections s_{α} is called the *Weyl group*.

Lemma Any two bases of a given root system $R \subset E$ are equivalent under the action of the Weyl group.

Lemma The root system R can be uniquely reconstructed from its basis.
Properties of simple roots

Definition
The hyperplanes orthogonal to $\alpha \in R$ cut the space \mathbb{E} into open, connected regions called *Weyl chambers*.

Lemma
There is a one-to-one correspondence between bases and Weyl chambers.
Properties of simple roots

Definition
The hyperplanes orthogonal to $\alpha \in R$ cut the space \mathbb{E} into open, connected regions called *Weyl chambers*.

Lemma
There is a one-to-one correspondence between bases and Weyl chambers.

Definition
The group generated by reflections s_α is called *Weyl group*.

Properties of simple roots

Definition
The hyperplanes orthogonal to $\alpha \in R$ cut the space \mathbb{E} into open, connected regions called *Weyl chambers*.

Lemma
There is a one-to-one correspondence between bases and Weyl chambers.

Definition
The group generated by reflections s_α is called *Weyl group*.

Lemma
Any two bases of a given root system $R \subset \mathbb{E}$ are equivalent under the action of the Weyl group.
Properties of simple roots

Definition
The hyperplanes orthogonal to $\alpha \in R$ cut the space \mathbb{E} into open, connected regions called **Weyl chambers**.

Lemma
There is a one-to-one correspondence between bases and Weyl chambers.

Definition
The group generated by reflections s_α is called **Weyl group**.

Lemma
Any two bases of a given root system $R \subset \mathbb{E}$ are equivalent under the action of the Weyl group.

Lemma
The root system R can be uniquely reconstructed from its basis.
Coxeter and Dynkin diagrams

Lemma

If α and β are distinct simple roots, then $\langle \alpha, \beta \rangle \leq 0$.
Lemma
If α and β are distinct simple roots, then $\langle \alpha, \beta \rangle \leq 0$.

Conclusion
Since $4 \cos^2 \theta \in \{0, 1, 2, 3\}$, it means that $\theta \in \{\frac{\pi}{2}, \frac{2\pi}{3}, \frac{3\pi}{4}, \frac{5\pi}{6}\}$.
Lemma
If α and β are distinct simple roots, then $\langle \alpha, \beta \rangle \leq 0$.

Conclusion
Since $4 \cos^2 \theta \in \{0, 1, 2, 3\}$, it means that $\theta \in \left\{ \frac{\pi}{2}, \frac{2\pi}{3}, \frac{3\pi}{4}, \frac{5\pi}{6} \right\}$.

Definition
The Coxeter graph of a root system R is a graph that has one vertex for each simple root of R and every pair α, β of distinct vertices is connected by $n_{\alpha\beta} \cdot n_{\beta\alpha} = 4 \cos^2 \theta \in \{0, 1, 2, 3\}$ edges.
Coxeter and Dynkin diagrams

Lemma
If α and β are distinct simple roots, then $\langle \alpha, \beta \rangle \leq 0$.

Conclusion
Since $4 \cos^2 \theta \in \{0, 1, 2, 3\}$, it means that $\theta \in \left\{ \frac{\pi}{2}, \frac{2\pi}{3}, \frac{3\pi}{4}, \frac{5\pi}{6} \right\}$.

Definition
The Coxeter graph of a root system R is a graph that has one vertex for each simple root of R and every pair α, β of distinct vertices is connected by $n_{\alpha \beta} \cdot n_{\beta \alpha} = 4 \cos^2 \theta \in \{0, 1, 2, 3\}$ edges.

Definition
The Dynkin diagram of a root system is its Coxeter graph with arrow attached to each double and triple edge pointing from longer root to shorter root.
Admissible diagrams

Definition
A set of n unit vectors $\{v_1, v_2, \ldots, v_n\} \subset \mathbb{E}$ is called an *admissible configuration* if:

1. v_i’s are linearly independent and span \mathbb{E},
2. if $i \neq j$, then $\langle v_i, v_j \rangle \leq 0$,
3. and $4 \langle v_i, v_j \rangle^2 = 4 \cos^2 \theta \in \{0, 1, 2, 3\}$.

Note
The set of normalized simple roots of any root system is an admissible configuration (they are linearly independent, span the whole space, and have specific angles between them).
Admissible diagrams

Definition
A set of n unit vectors $\{v_1, v_2, \ldots, v_n\} \subset \mathbb{E}$ is called an \textit{admissible configuration} if:

1. v_i’s are linearly independent and span \mathbb{E},
2. if $i \neq j$, then $\langle v_i, v_j \rangle \leq 0$,
3. and $4 \langle v_i, v_j \rangle^2 = 4 \cos^2 \theta \in \{0, 1, 2, 3\}$.

Note
The set of normalized simple roots of any root system is an admissible configuration (they are linearly independent, span the whole space, and have specific angles between them).
Admissible diagrams

Definition
A set of n unit vectors $\{v_1, v_2, \ldots, v_n\} \subset \mathbb{E}$ is called an admissible configuration if:

1. v_i’s are linearly independent and span \mathbb{E},
2. if $i \neq j$, then $\langle v_i, v_j \rangle \leq 0$,
3. and $4 \langle v_i, v_j \rangle^2 = 4 \cos^2 \theta \in \{0, 1, 2, 3\}$.

Note
The set of normalized simple roots of any root system is an admissible configuration (they are linearly independent, span the whole space, and have specific angles between them).

Definition
Coxeter graph of an admissible configuration is admissible diagram.
Irreducibility

Definition
If a root system is not decomposable, it is called irreducible.
Irreducibility

Definition
If a root system is not decomposable, it is called *irreducible*.

Lemma
The root system is irreducible if and only if its base is irreducible.
Irreducibility

Definition
If a root system is not decomposable, it is called *irreducible*.

 Lemma
The root system is irreducible if and only if its base is irreducible.

Conclusion
It means, the set of simple roots of an irreducible root system can not be decomposed into mutually orthogonal subsets. Hence the corresponding Coxeter graph will be *connected*. Thus, to classify all irreducible root systems, it is enough to consider only connected admissible diagrams.
Classification theorem

Theorem

The Dynkin diagram of an irreducible root system is one of:

- A_n: \[n \leq 1\]
- B_n: \[n \leq 2\]
- C_n: \[n \leq 3\]
- D_n: \[n \leq 4\]
- E_6
- E_7
- E_8
- F_4
- G_2
Step 1

Claim: Any subdiagram of an admissible diagram is also admissible.
Claim: Any subdiagram of an admissible diagram is also admissible.

If the set \(\{v_1, v_2, \ldots, v_n\} \) is an admissible configuration, then clearly any subset of it is also an admissible configuration (in the space it spans). The same holds for admissible diagrams.
Step 2

Claim: A connected admissible diagram is a tree.
Claim: A connected admissible diagram is a tree.

Define \(v = \sum_{i=1}^{n} v_i \) (\(v \neq 0 \)). Then

\[
0 < \langle v, v \rangle = \sum_{i=1}^{n} \langle v_i, v_i \rangle + \sum_{i<j} 2 \langle v_i, v_j \rangle = n + \sum_{i<j} 2 \langle v_i, v_j \rangle.
\]

If \(v_i \) and \(v_j \) are connected, then

\[
2 \langle v_i, v_j \rangle \in \left\{ -1, -\sqrt{2}, -\sqrt{3} \right\}
\]

In particular, \(2 \langle v_i, v_j \rangle \leq -1 \). It means, the number of terms in the sum and hence the number of edges can not exceed \(n - 1 \).
Step 3

Claim: No more than three edges (counting multiplicities) can originate from the same vertex.
Step 3

Claim: No more than three edges (counting multiplicities) can originate from the same vertex.

Let v_1, v_2, \ldots, v_k be connected to c, then $\langle v_i, v_j \rangle = \delta_{ij}$. Let $v_0 \neq 0$ be the normalized projection of c to the orthogonal complement of v_i’s. Then $\{v_0, v_1, v_2, \ldots, v_k\}$ is an orthonormal basis and:

$$c = \sum_{i=0}^{k} \langle c, v_i \rangle v_i.$$

Since $\langle c, c \rangle = \sum_{i=0}^{k} \langle c, v_i \rangle^2 = 1$ and $\langle c, v_0 \rangle \neq 0$, then

$$\sum_{i=1}^{k} 4 \langle c, v_i \rangle^2 < 4,$$

where $4 \langle c, v_i \rangle^2$ is the number of edges between c and v_i.
Claim: The only connected admissible diagram containing a triple edge is

\[G_2 \]

This follows from the previous step. From now on we will consider only diagrams with single and double edges.
Step 4

Claim: *The only connected admissible diagram containing a triple edge is*

\[G_2 \]

This follows from the previous step. From now on we will consider only diagrams with single and double edges.
Step 5

Claim: Any simple chain \(v_1, v_2, \ldots, v_k\) can be replaced by a single
vector \(v = \sum_{i=1}^{k} v_i\).
Step 5

Claim: Any simple chain v_1, v_2, \ldots, v_k can be replaced by a single vector $v = \sum_{i=1}^{k} v_i$.

Vector v is a unit vector, since $2 \langle v_i, v_j \rangle = -\delta_{i+1,j}$ and therefore

$$\langle v, v \rangle = k + \sum_{i<j} 2 \langle v_i, v_j \rangle = k + \sum_{i=1}^{k-1} 2 \langle v_i, v_{i+1} \rangle = k - (k - 1) = 1.$$

If u is not in the chain, then it can be connected to at most one vertex in the chain (let it be v_j). Then

$$\langle u, v \rangle = \sum_{i=1}^{k} \langle u, v_i \rangle = \langle u, v_j \rangle$$

and u remains connected to v in the same way. Therefore the obtained diagram is also admissible and connected.
Step 6

Claim: A connected admissible diagram has none of the following subdiagrams:

- [Diagram showing the subdiagrams described in the claim]
Step 6

Claim: A connected admissible diagram has none of the following subdiagrams:

![Diagrams showing subdiagrams](image)

Conclusion

It means that a connected admissible diagram can contain at most one double edge and at most one branching, but not both of them simultaneously.
Step 7

Claim: There are only three types of connected admissible diagrams:

T1: a simple chain,

T2: a diagram with a double edge,

T3: a diagram with branching.

![Diagram of T1](image1)

![Diagram of T2](image2)

![Diagram of T3](image3)
Claim: The admissible diagram of type T1 corresponds to the Dynkin diagram A_n, where $n \geq 1$.

\[A_n \begin{array}{cccccccccc}
 \circ & \quad & \circ & \quad & \cdots & \quad & \circ & \quad & \circ & \quad & \circ \\
 & & & & & & & & & \\
\end{array} \\
(n \leq 1)
Claim: The admissible diagrams of type $T2$ are F_4, B_n, and C_n.
Step 9

Claim: The admissible diagrams of type $T2$ are F_4, B_n, and C_n.

Define $u = \sum_{i=1}^{p} i \cdot u_i$. Since $2 \langle u_i, u_{i+1} \rangle = -1$ for $1 \leq i \leq p - 1$,

$$
\langle u, u \rangle = \sum_{i=1}^{p} i^2 \langle u_i, u_i \rangle + \sum_{i<j} ij \cdot 2 \langle u_i, u_j \rangle = \sum_{i=1}^{p} i^2 - \sum_{i=1}^{p-1} i(i + 1)
$$

$$
= p^2 - \sum_{i=1}^{p-1} i = p^2 - \frac{p(p - 1)}{2} = \frac{p(p + 1)}{2}.
$$

Similarly, $v = \sum_{j=1}^{q} j \cdot v_j$ and $\langle v, v \rangle = q(q + 1)/2$. From $\langle u, v \rangle = pq \langle u_p, v_q \rangle$ and $4 \langle u_p, v_q \rangle^2 = 2$ we get $\langle u, v \rangle^2 = p^2 q^2 / 2$. From Cauchy-Schwarz inequality $\langle u, v \rangle^2 < \langle u, u \rangle \langle v, v \rangle$ we get

$$
\frac{p^2 q^2}{2} < \frac{p(p + 1)}{2} \cdot \frac{q(q + 1)}{2}.
$$
Step 10 (continued)

Since $p, q \in \mathbb{Z}_+$, we get $2pq < (p + 1)(q + 1)$ or simply $(p - 1)(q - 1) < 2$.

$p = q = 2 \text{ and } p = 1 \text{ and } q \text{ is arbitrary (or vice versa)}$
Step 10 (continued)

Since $p, q \in \mathbb{Z}_+$, we get $2pq < (p + 1)(q + 1)$ or simply $(p - 1)(q - 1) < 2$.

$p = q = 2$

F_4
Step 10 (continued)

Since $p, q \in \mathbb{Z}_+$, we get $2pq < (p + 1)(q + 1)$ or simply $(p - 1)(q - 1) < 2$.

$p = q = 2$

\[F_4 \]

$p = 1$ and q is arbitrary (or vice versa)

\[B_n \]

\[C_n \]

(n\leq3)
Claim: The admissible diagrams of type T3 are D_n, E_6, E_7, E_8.
Claim: The admissible diagrams of type T3 are D_n, E_6, E_7, E_8.

Define $u = \sum_{i=1}^{p-1} i \cdot u_i$, $v = \sum_{j=1}^{q-1} j \cdot v_j$, and $w = \sum_{k=1}^{r-1} k \cdot w_k$. Let u', v', and w' be the corresponding unit vectors. Then

$$1 = \langle c, c \rangle > \langle c, u' \rangle^2 + \langle c, v' \rangle^2 + \langle c, w' \rangle^2.$$

Since $\langle c, u_i \rangle^2 = 0$ unless $i = p - 1$ and $4 \langle c, u_{p-1} \rangle^2 = 1$, we have

$$\langle c, u \rangle^2 = \sum_{i=1}^{p-1} i^2 \langle c, u_i \rangle^2 = (p - 1)^2 \langle c, u_{p-1} \rangle^2 = \frac{(p - 1)^2}{4}.$$

We already know that $\langle u, u \rangle = p(p - 1)/2$, therefore

$$\langle c, u' \rangle^2 = \frac{\langle c, u \rangle^2}{\langle u, u \rangle} = \frac{(p - 1)^2}{4} \cdot \frac{2}{p(p - 1)} = \frac{p - 1}{2p} = \frac{1}{2} \left(1 - \frac{1}{p} \right).$$
If we do the same for \(v \) and \(w \), we get

\[
2 > (1 - 1/p) + (1 - 1/q) + (1 - 1/r)
\]

or simply

\[
\frac{1}{p} + \frac{1}{q} + \frac{1}{r} > 1, \quad p, q, r \geq 2.
\]
Step 10 (Continued)

If we do the same for v and w, we get
\[2 > (1 - 1/p) + (1 - 1/q) + (1 - 1/r) \]
or simply
\[
\frac{1}{p} + \frac{1}{q} + \frac{1}{r} > 1, \quad p, q, r \geq 2.
\]

We can assume that $p \geq q \geq r \geq 2$. There is no solution with $r \geq 3$, since then the sum can not exceed 1. Therefore we have to take $r = 2$. If we take $q = 2$ as well, then any p suits, but for $q = 3$ we have $1/q + 1/r = 5/6$ and we can take only $p < 6$. There are no solutions with $q \geq 4$, because then the sum is at most 1.
If we do the same for v and w, we get

$$2 > (1 - 1/p) + (1 - 1/q) + (1 - 1/r)$$

or simply

$$\frac{1}{p} + \frac{1}{q} + \frac{1}{r} > 1, \quad p, q, r \geq 2.$$

We can assume that $p \geq q \geq r \geq 2$. There is no solution with $r \geq 3$, since then the sum can not exceed 1. Therefore we have to take $r = 2$. If we take $q = 2$ as well, then any p suits, but for $q = 3$ we have $1/q + 1/r = 5/6$ and we can take only $p < 6$. There are no solutions with $q \geq 4$, because then the sum is at most 1.

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>r</th>
<th>Dynkin diagram</th>
</tr>
</thead>
<tbody>
<tr>
<td>any</td>
<td>2</td>
<td>2</td>
<td>D_n</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>E_6</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>E_7</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>E_8</td>
</tr>
</tbody>
</table>
End of proof

Q.E.D.
End of proof

Q.E.D.

Theorem

For each Dynkin diagram we have found there indeed is an irreducible root system having the given diagram.